Ultra Wideband RF/IF

Features

- Sample rates up to 6 GHz
- Real-time sustained recording rates up to 6 GB/sec
- Integrated DDCs and DUCs
- Record up to 2.4 GHz wide bandwidth signals
- Playback up to 1.28 GHz wide bandwidth signals
- Up to 122 TB of front-panel removable solid state storage
- 4U 19-inch industrial grade server chassis
- SystemFlow GUI with Signal Viewer analysis tool
- C-callable API for integration

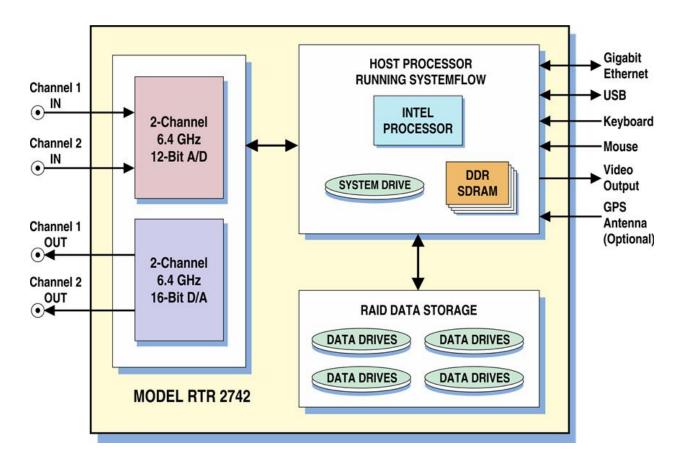
General Information

Talon RTR 2742 is a turn-key record and playback system for ultra-wideband analog RF/IF signals. Using two 12-bit, 6.4 GHz A/D converters, this system can achieve sustained recording of 2.4 GHz bandwidth signals at rates up to 6 GBytes per second. It can be configured as a one- or two-channel system and can record real samples or complex I+Q digitally down-converted samples.

Complemented by a 16-bit, 6.4 GHz D/A converter, the RTR 2742 is capable of playing back analog signal bandwidths up to 1.28 GHz. Built-in digital down- and up-converters provide flexible bandwidth and tuning frequency selection for both record and playback.

The RTR 2742 includes a 12-bit 6.4 GHz A/D that can be clocked at rates from 1.6 to 6 GHz in singlechannel mode. Data can be truncated and packed as 8-bit samples, to support continuous recording up to the maximum sample rate. The D/A is capable of reproducing signals with up to 1.28 GHz of instantaneous bandwidth and includes a wide range of interpolations.

Rugged and Flexible Architecture


Because SSDs operate reliably under conditions of vibration and shock, the RTR 2742 performs well in ground, shipborne and airborne environments. The hot-swappable SSDs provide storage capacity of up to 122 TB. The drives can be easily removed or exchanged during or after a mission to retrieve recorded data.

The RTR 2742 is configured in a 4U 19-inch rugged rackmount chassis, with hot-swappable data drives, front panel USB ports and I/O connectors on the rear panel. Systems are scalable to accommodate multiple chassis to increase channel counts and aggregate data rates. All recorder chassis are connected via Ethernet and can be controlled from a single GUI either locally or from a remote PC.

RAID levels 0, 5, and 6 provide a choice for the required level of redundancy.

2742 Block Diagram

Operational Modes

The RTR 2742 uses JESD204B A/D and D/A converters that are limited to a set of operational modes. These modes are defined below:

Record Modes

Single-Channel Mode (dual-edged sampling)	Dual-Channel Mode (single-edged sampling)				
8-bit packed real, fs = 1600 - 6000 MHz	8-bit packed real, fs = 800 - 3000 MHz				
16-bit packed real, fs = 1600 - 3000 MHz	16-bit packed real, fs = $800 - 1500 \text{ MHz}$				
	16-bit packed complex DDC, fs = 800 - 3000 MHz (dec = 4)				
	16-bit packed complex DDC, fs = $800 - 3200 \text{ MHz}$ (dec = 8 or 16)				

Playback Modes

Single-Channel Mode (single-edged sampling)	Dual-Channel Mode (single-edged sampling)
8-bit packed real, fs = 1600 - 3200 MHz	16-bit packed real, fs = 400 - 1250 MHz
16-bit packed real, fs = 400 - 1600 MHz	16-bit packed real, fs = 800 - 2500 MHz (int = 2)
16-bit packed real, fs = 800 - 3200 MHz (int = 2)	16-bit packed real, fs = 1600 - 3200 MHz (int = 4)
16-bit packed real, fs = 1600 - 3200 MHz & 5240 - 6400 MHz (int = 4)	16-bit packed complex DUC, fs = $1200 - 3200 \text{ MHz}$ (int = 6)
16-bit packed complex DUC, fs = 800 - 1600 MHz (int = 2)	16-bit packed complex DUC, fs = 1600 - 3200 MHz (int = 8)
16-bit packed complex DUC, fs = 1600 - 3200 MHz (int = 4)	16-bit packed complex DUC, fs = 2000 - 3200 MHz & 5240 - 5750 MHz (int = 10)
16-bit packed complex DUC, fs = 1200 - 3200 MHz (int = 6)	16-bit packed complex DUC, fs = 2400 - 3200 MHz & 5240 - 6400 MHz (int = 12)
16-bit packed complex DUC, fs = 1600 - 3200 MHz & 5240 - 6400 MHz (int = 8)	16-bit packed complex DUC, fs = 3200 MHz & 5240 - 6400 MHz (int = 16)
16-bit packed complex DUC, fs = 2000 - 3200 MHz & 5240 - 6400 MHz (int = 10)	16-bit packed complex DUC, fs = 5240 - 6400 MHz (int = 18)
16-bit packed complex DUC, fs = 2400 - 3200 MHz & 5240 - 6400 MHz (int = 12)	16-bit packed complex DUC, $fs = 5240 - 6400 \text{ MHz}$ (int = 24)
16-bit packed complex DUC, fs = 3200 MHz & 5240 - 6400 MHz (int = 16)	
16-bit packed complex DUC, fs = 5240 - 6400 MHz (int = 18)	1
16-bit packed complex DUC, fs = 5240 - 6400 MHz (int = 24)	1

SystemFlow Software

All Talon recorders include the Pentek SystemFlow[®] recording software. SystemFlow software provides three ways for users to configure and control a Talon recorder:

- The SystemFlow GUI provides a point-andclick user interface. It includes Configure, Record, Playback, and Status screens, each with intuitive controls and indicators. The user can easily move between screens to configure parameters, control and monitor a recording, and play back a recorded stream.
- The SystemFlow API provides a set of Ccallable libraries that allow engineers to develop their own user interface to configure and control their Talon recorder.
- The SystemFlow Telnet interface provides a simple set of commands to configure and control the recorder. This eliminates the need for any software development and is most suitable for unmanned operation.

SystemFlow software allows the recorder to be set up to run autonomously by implementing scripts using the API or telnet interface. All three interfaces can be run from a remote connection over Gigabit Ethernet.

A simple header that holds the recording parameters is added to the beginning of the file. An optional GPS receiver allows the user to precisely timestamp files and optionally track the recorder's position throughout a mission. The system records all data to the native NTFS file system, allowing for quick and easy access to the data from any computer.

Click below to view a video about SystemFlow.

SystemFlow Simulator

To learn more about the SystemFlow Software, you can download and install the free SystemFlow Simulator to your desktop or laptop PC. The SystemFlow Simulator allows you to learn how to use the Talon recording system's SystemFlow software interface before you acquire a recorder or while you are waiting for delivery of a Talon recording system.

The Simulator can simulate the operating environment of all the different Talon recorder models. The Simulator also demonstrates the SystemFlow Signal Viewer by playing recorded signals to simulate the appearance of live signals being digitized and recorded by a Pentek analog signal recorder.

Features

- Provides real-time recording system simulation
- Demonstrates SystemFlow signal & file viewer tools
- Capable of simulating all Talon analog and digital recording systems
- Full Talon SystemFlow GUI
- Simulator can be used to develop Talon system profiles for use in the final system
- Can be used with the SystemFlow API to develop and test custom user interface

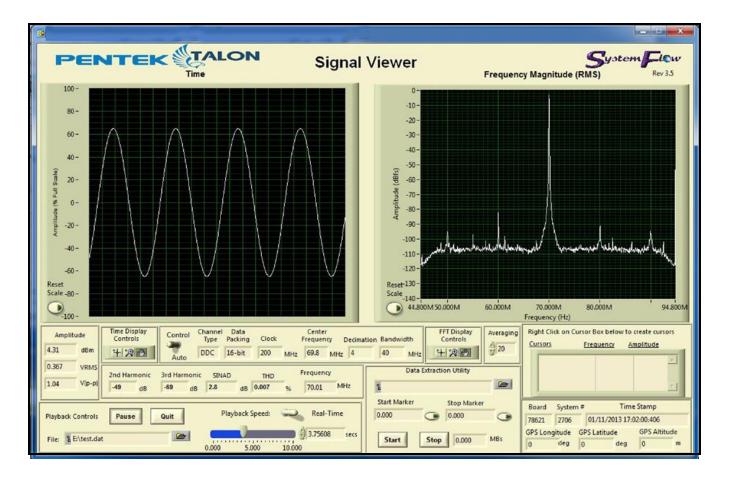
SystemFlow Recorder Interface

The RTR 2742 GUI provides the user with a control interface for the recording system. It includes Configuration, Record, Playback and Status screens, each with intuitive controls and indicators. The user can easily move between screens to set configuration parameters, control and monitor a recording, play back a recorded signal and monitor board temperature and voltage levels. The signal viewer, integrated into the recording GUI, allows the user to monitor real-time signals or signals recorded on disk.

The factor of the second se	Record Sta		About	ALON		/	U	tra \	Nid	leba	und R	F/IF Re	ecord	er
	Transfer Ti	me 0.0 Sec	s 🛄 0	Start Time 7/24/20 11:41 / Current		Loop	Dis	k Usage		Data Lo	\$\$		Signal V File Vie	
Local 78141_1														
Channel		Auto Name	File Name	Ove writ	S. contract		Loop	Master Record	Record	Stop	Status	Channel Position (MS)	Data Rate (MS/s)	Data Loss
CH1 IN	Browse]	[0.0 Secs 💌				0	Stopped	0	0.00	
CH2 IN	Browse] 🗆				0.0 Secs V				0	Stopped	0	0.00	L

Setting System Parameters

The RTR 2742 configuration GUI provides a simple and intuitive means for setting up the system parameters such as channel mode, clock frequency, downconversion, and gate/trigger mode. All parameters contain limit-checking and integrated help to provide an easier-to-use out-of-the-box experience. Details about each field on the configuration screens are provided in the RTR 2742 user manual.


	t Parameters		ut Parameters
Channel Mode:	Single	Channel Mode:	Single 💌
Clock Source:	Internal	Clock Source.	Internal 💌
Clock Frequency:	2800.0 MHz	Clock Frequency:	1600.0 MHz
		Operation Mode:	8-bit, real,Interp 1
Operation Mode:	8-bit, real,dec 1	Bandwidth	800.0 MHz
Bandwidth	1400.0 MHz	CH1 Center Frequency:	500.0 MHz
CH1 Center Frequency:	500.0 MHz	CH2 Center Frequency:	500:0
CH2 Center Frequency.	500.0	Gate / Trigger Mode:	None
		Gate / Trigger Polarity:	Negative 💌
Gate / Trigger Mode:	None		
Gate / Trigger Polarity:	Positive	D/A Output Sampling Rate:	1600.0 MHz
A/D Sampling Rate:	2800.0 MHz	Disk Data Rate:	1600.0 MS/s
ver camping reate.	2000.0 11112		
Disk Data Rate:	2800.0 MS/s	ок	Cancel Apply

Signal Viewer

The SystemFlow Signal Viewer includes a virtual oscilloscope and spectrum analyzer for signal monitoring in both the time and frequency domains. It is extremely useful for previewing live inputs prior to recording, and for monitoring signals as they are being recorded to help ensure successful recording sessions. The viewer can also be used to inspect and analyze the recorded files after the recording is complete.

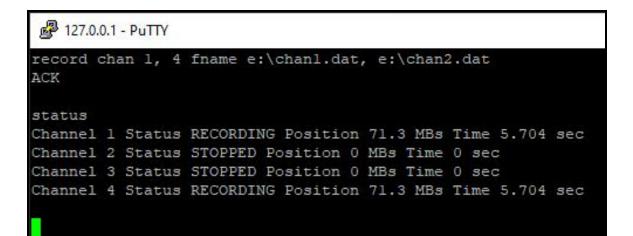
Advanced signal analysis capabilities include automatic calculators for signal amplitude and frequency, second and third harmonic components, THD (total harmonic distortion), and SINAD (signal to noise and distortion). With time and frequency zoom, panning modes, and dual, annotated cursors to mark and measure points of interest, the SystemFlow Signal Viewer can often eliminate the need for a separate oscilloscope or spectrum analyzer in the field.

SystemFlow API

SystemFlow includes a complete API (Application Programming Interface) supporting control and status queries of all operations of the Talon recorder from a custom application.

High-level C-language function calls and the supporting device drivers allow users to incorporate the RTR 2742 as a high-performance server front end to a larger system. This is supported using a socket interface through the Ethernet port, either to a local host or through an internet link for remote, standalone acquisition. Recorded NTFS files can be easily retrieved through the same connection.

Below is an example of controlling recording via the SystemFlow API.


```
//transfer until end of disk
Ó
         else if (transferType == TRANSFER_END OF_DISK)
             recordParams->transferTime
                                            = 0;
             recordParams->transferLength = 0;
         SetConsoleTextAttribute (hConsole, FOREGROUND GREEN | FOREGROUND INTENSITY );
         printf("\nCase 6: RTS_Record\n");
         SetConsoleTextAttribute (hConsole, wOldColorAttrs);
         if (recordParams->trigger == RTS TRIGGER IMMEDIATELY)
              //send record command
             if ((error = RTS_Record(++msgNum,
                                      serverInfo,
                                      recordParams,
                                      recordChanId,
                                      fileName[0])) != RTS_SUCCESS)
                 printf("Record Error # 0x%lx.\n", error);
                 exitHandler(error);
                  goto freeMem;
             Sleep(500);
         else if(recordParams->trigger == RTS_WAIT_FOR_SW_TRIGGER)
              //send record command which set up record and start DMA
              if ((error = RTS_Record(++msgNum,
                                      serverInfo,
                                      recordParams,
                                      recordChanId,
                                      fileName[0])) 1= RTS SUCCESS)
```

SystemFlow Telnet

The Talon telnet facility is an optional feature that can be requested when ordering one of Pentek's Talon recording systems. The Talon telnet facility allows you to control a Talon recorder from a remote computer. You also can use the Talon recorder's SystemFlow Signal Viewer to remotely monitor real-time data.

Pentek's Telnet Facility for Talon Recording Systems User's Guide provides instructions for setting up telnet access and describes all the supported commands.

Below is an example of use of the "record" command:

Specifications

PC Workstation (standard configuration)

Operating System: Windows Processor: Intel Core i7 processor SDRAM: 8 GB RAID

Storage: 7.6, 15.3, 30.7, 61, or 122.8 TB Drive Type: SATA III SSDs Supported RAID Levels: 0, 5, and 6

Analog Signal Inputs

Connectors: Two rear panel SSMC connectors, In 1 & In 2

Input Type: Single-ended, non-inverting Full Scale Input: 1 dBm into 50 ohms Coupling: Transformer-coupled

A/D Converters

Type: Texas Instruments ADC12DJ3200 Sampling Rate: Up to 6 GHz Resolution: 12 bits Anti-Aliasing Filters: External, user-supplied

Analog Signal Outputs

Connectors: Two rear panel SSMC connectors: OUT 1 & OUT 2 Output Type: Single-ended, non-inverting Full Scale Output: +5 dBm **Coupling:** Transformer-coupled Analog Output Transformer Bandwidth: 1.28 MHz

D/A Converters

Type: Texas Instruments DAC38RF82 Sampling Rate: Up to 6 GHz Resolution: 16 bits

Sampling Clock Source

Internal fixed-frequency or programmable oscillator (selectable by option); in single-channel mode, the sample rate is 2x the clock frequency; in dual- channel mode, the sample rate equals the clock frequency

Frequency Reference

Accepts external 10 MHz reference at 0 to +4 dBm to phase-lock the clock oscillator

Physical and Environmental

4U Long Chassis: 19" W x 26" D x 7" H Weight: 50 lb, approx. Operating Temp: 0° to +50° C Storage Temp: -40° to +85° C **Relative Humidity:** 5 to 95%, non-condensing Operating Shock: 15 g max. (11 msec, half sine wave)

Operating Vibration: 10 to 20 Hz: 0.02 inch peak, 20 to 500 Hz: 1.4 g peak acceleration

Power Requirements: 100 to 240 VAC, 50 to 60 Hz, 500 W max.

Specifications are subject to change without notice.

Ordering Information

Click here for more information.

RAID Options	
Option -285	RAID 5 configuration
Option -286	RAID 6 configuration
Memory Options	
Option - 309	16 GB system memory
Option -311	64 GB DDR4 SDRAM
Storage Options	
Option -415	7.6 TB SSD
Option -420	15.3 TB SSD
Option -430	30.7 TB SSD
Option -460	61 TB SSD
Option -485	122.8 TB SSD
Other Options	
Option -261	GPS time and position stamping
Option -264	IRIG-B time stamping
Option -267	Dual 10 GbE offload
Option -268	40 GbE offload
Option -625	Removable OS drive enclosure
Option -680	28V DC power supply

Pricing and Availability

To learn more about our products or to discuss your specific application please contact your local representative or Pentek directly:

Pentek, Inc. One Park Way Upper Saddle River, NJ 07458 USA Tel: +1 (201) 818-5900 Email: sales@pentek.com

Lifetime Applications Support

Pentek offers the worldwide military embedded computing community shorter development time, reliable, rugged solutions for a variety of environments, reduced costs, and mature software development tools. We offer free lifetime support from our engineering staff, which customers can depend on through phone and email, as well as software updates. Take advantage of Pentek's 30 years of experience in delivering high-performance radar, communications, SIGINT, EW, and data acquisition MIL-Aero solutions worldwide.

