Length measurement board, 16-bit, simultaneous acquisition of 5 inductive transducers, LVDT, half-bridge

PCI 32-bit

LabVIEW™

The PCI length measurement board APCI-3702 is designed for the simultaneous acquisition of 5 half-bridge or LVDT transducers.

It operates with a 16-bit resolution.

It is suited for dynamic measurement, e.g. for measuring moving parts or applications with time-critical measurement cycles – especially in test equipment with several sensors.

The calibration tool SET3701 includes a data base with pre-calibrated transducers. It guides you through each step of the installation beginning with the selection of a transducer up to testing the channels.

Features

- PCI interface to the 32-bit data bus, 3.3 V or 5 V
- Acquisition of 5 inductive transducers
- (half-bridge, LVDT)
- 16-bit resolution
- Sampling rate depending on the transducer: 2-20 kHz
- Example for TESA transducers GT21: 13.951 kHz per channel,
 0.072 ms for one sequence of up to 5 channels
- Measuring frequency through software programmable: 2-20 kHz
- Conversion triggered through software, digital input or timer
- End of conversion through software and/or interrupt
- PCI-DMA access
- Onboard FIFO
- Sequence RAM
- 16 digital inputs and outputs, optically isolated, 24 V
- Connection of the transducer through external box PX3701-8. The box type depends on the transducers used.
- Please order separately.
- Software operation
- Automatic setting of the input levels (gain and offset) according to the transducer sensitivity
- Tool for individual database-managed calibration of the transducers
- Database for connecting/calibrating a large range of industry-standard transducers:
 - Solartron Tesa Marposs Schlumberger
 - Peter & Hirt Mahr RDP Schaevitz
 - SMPR Controle
 - Further transducers like for example Horst Knäbel can be calibrated on request.

APCI-3702

Simultaneous acquisition of 5 inductive

transducers

Half-bridge, LVDT

16-bit resolution

16 digital inputs and outputs, optically isolated

Safety features

- Input filters
- Diagnostic function in case of short-circuits or line break

Applications

- Gear wheel control
- Gauge block
- Acquisition of sensor data
- Quality control
- Industrial process controlAutomatic parts control
- R&D instrumentation

Software

Calibration tool SET3701 (supplied with the board)

- Easy transducer calibration
- Step by step from the transducer selection up to testing each single channel.
- Database with more than 50 pre-calibrated transducers
- Update of the APCI-3702 firmware

Standard drivers for:

- Linux
- 32-bit drivers for Windows 8 / 7 / Vista / XP / 2000
- Signed 64-bit drivers for Windows 8 / 7 / XP

• Real-time use with Linux and Windows on request Drivers for the following compilers and software packages:

- .NET
- Microsoft VC++ Borland C++ Visual Basic Delphi
- LabVIEW
 LabWindows/CVI

ADDIPACK functions:

Transducer • Timer • Digital input • Digital output On request:

Further operating systems, compilers and samples.

Driver download: www.addi-data.com, download menu

info@addi-data.com www.addi-data.com

Specifications

Connection of induc	ctive transducers							
Inputs for inductive transducers								
Number	5 (simultaneous)							
Input type	Single ended							
Coupling	DC							
Resolution / Accuracy:	16-bit / 13-bit							
Sampling rate f_c on 5 channels	Depending on the transducer							
selectable per software:	4.883 kHz (typ.)							
	6.975 kHz (typ.)							
	9.768 kHz (typ.)							
	13.951 kHz (typ.)							
	19.531 kHz (typ.)							
Example with TESA GT21	13.951kHz (on 5 channels)							
Input level								
Input impedance	2 kΩ software-programmable							
	10 kΩ							
	100 kΩ							
	10 MΩ							
Sensor supply (sinus genera	itor)							
Туре	Sinus differential (180° phase-shift)							
Number of outputs:	2							
Coupling	AC							
Programmed signals:								
output frequency f_{P}	2-20 kHz depending on the transducer							
(primary frequency)	(50 kHz Knäbel)							
Output level								
Output impedance	< 0.1 Ω typ.							
	$>$ 30 k Ω typ. in shutdown mode							
Short-circuit current	0.7 A typ. at 25°C with thermal protection							

Digital I/O

J	
Number of I/O channels:	8 dig. inputs, 8 dig. outputs, 24 V
Optical isolation:	1000 V through opto-couplers
Input current at 24 V:	11 mA typ.
Max. input frequency:	5 kHz (inputs 1 to 7)
Max. switching current at 24 V:	50 mA typ.
Input voltage:	0-30 V
Output voltage:	5-30 V

EMC – Electromagnetic compatibility

The product complies with the European EMC directive. The tests were carried out by a certified EMC laboratory in accordance with the norm from the EN 61326 series (IEC 61326). The limit values as set out by the European EMC directive for an industrial environment are complied with. The respective EMC test report is available on request.

Physical and environmental conditions

Dimensions:	109 x 138 mm
System bus:	PCI 32-bit 3.3/5 V acc. to spec. 2.2 (PCISiG)
Space required:	1 PCI slot for analog inputs,
	1 slot opening for digital I/O with FB3702
Operating voltage:	+5 V, \pm 5 % from the PC; 24 V external
Current consumption	990 mA typ. without load
(+ 5 V from the PC):	
Front connector:	50-pin D-Sub male connector
Additional connector:	16-pin male connector for connecting the dig. I/O
Temperature range:	0 to 60 °C (with forced cooling)

Simplified block diagram

Pin assignment 50-pin D-Sub male connector

PIN	Pin			-			Pin
34 BAC 35 BAC 36 OSC 37 OSC 38 OSC 39 PWI 40 CHC 41 PWI 42 CH3 43 PWI 44 NC 45 PWI 46 NC 47 PWI 48 NC 49 PWI 50 NC	K+ 18 K- 19 + 20 + 21 - 22 KGND 23 KGND 24 KGND 25 - 26 KGND 26 KGND 27 KGND 28 KGND 29 XGND 31 XGND 32 XGND 33 XGND 32 XGND 33 XGND 32 XGND 33 XGND 32 XGND 32 X	BACK+ BACK- OSC+ OSC+ OSC- PWRGND CH3 PWRGND NC PWRGND NC PWRGND	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	8	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	BACK+ BACK- OSC+ OSC- PWRGND CH1 PWRGND CH4 PWRGND NC PWRGND NC PWRGND	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Osc+/-: Phase-shifted supply signal of the inductive transducers Back+/-: Return lines of the supply voltage for measuring the amplitude. Actual value signal of the oscillator for the supply voltage. CHx: Transducer input and input number PWRGND: Ground

ADDI-DATA connection

Ordering information

APCI-3702

Length measurement board, 16-bit, simultaneous acquisition 5 inductive transducers, LVDT, half-bridge. Incl. technical description and software drivers.

Accessories for HB and LVDT transducer:

 PX3701HB-8:
 Connection box of the APCI-3702

 PX3701LVDT-8:
 Connection box of the APCI-3702

 ST3701-8-KS:
 Shielded coaxial cable between APCI-3702 and connection box PX3701-8

Accessories:

FB3702: Ribbon cable for digital I/O PX901-ZG: Screw terminal panel for digital I/O, for DIN rail ST010: Standard round cable, shielded, twisted pairs, 2 m