

GPS-2600 and GPS-2650

100 MHz DOCXO-based GPS Disciplined Oscillator

Key Features

- High-performance GPS Receiver
- Small footprint and low profile: only 1.5" x 4" x 0.8"
- Excellent holdover stability
- Built-in Distribution Amplifier for multiple outputs at both 100 MHz and 10 MHz
- Low phase noise and very low phase noise floor at 100 MHz
- 1 PPS output accuracy of ±30 ns to UTC RMS (1-sigma), GPS-locked

Applications

- Unmanned Aerial Vehicles (UAV's)
- IED Jammers fixed, mounted, dismounted
- Radar Systems
- Satellite Communications terminals
- Aircraft Guidance Systems
- Tactical Radios
- Underwater systems using GPS for initialization

The Symmetricom® GPS-2600 and GPS-2650 are 100 MHz Double-Oven OCXO-based GPS Disciplined Oscillators (GPSDO's). The GPS-2600 covers a temperature range of -25°C to +75°C, while the GPS-2650 covers an extended range of -25°C to +85°C. Both units feature a highperformance GPS receiver that can track up to 50 GPS signals, down to levels as low as -160 dBm. The receiver is compatible with GPS, WAAS, EGNOS, and MSAS signals, and is Galileo-ready.

Special software functionality supports airborne applications by providing avionics systems with a 3D velocity vector, Attitude/ Tilt information, Speed, Heading, Height (both MSL and GPS height), Position, Time, Date, Frequency, Time-stamping, and Health information. For mission-critical applications, the units also provide a direct redundancy feature, allowing multiple units to be daisy-chained to each other for increased reliability.

By providing both 10 MHz and 100 MHz reference outputs in one compact unit, the GPS-2600 and GPS-2650 are an excellent fit for up-conversion subsystems used in radar and satellite equipment, where very low phase noise is critical. The units provide two 10 MHz outputs, one sine wave at +13 dBm, and one with LVDScompatible levels. They also provide seven 100 MHz outputs, 2 sine wave at +7 dBm each, 4 LVDS-compatible, and 1 5V CMOScompatible. There are also three 1 PPS outputs, one each with 5V CMOS, LVDS, and RS-232 compatible levels. The 1 PPS output is accurate to within ±30 ns of UTC RMS (1-sigma), once GPS lock has been achieved.

Holdover stability is excellent, at better than $\pm 7 \mu$ s over a 24-hour period at +25°C. Phase noise at 10 MHz is <-100 dBc/Hz at a 1 Hz offset, with the comparable number for the 100 MHz output being -60 dBc/Hz. The noise floor of the 10 MHz output is <-145 dBc/Hz, and for the 100 MHz output it is an extremely low -160 dBc/Hz. The units consume <4W of power at +25°C.

These units can be monitored and controlled through an RS-232 port via standard SCPI commands, and they also can generate NMEA-0183 output sentences for easy integration into existing system architectures.

GPS-2600 and GPS-2650 100 MHz DOCXO-based GPS Disciplined Oscillator

Specifications

ELECTRICAL SPECIFICATIONS

1 PPS Accuracy	±30ns to UTC RMS (1-sigma) GPS locked
Frequency Accuracy	Better than ±3.0 E-10 after 1 hour operation with GPS locked
Holdover Stability	±7µs over 24 hour period @+25°C (no motion)
ADEV	1s to 1000s: 2.0E-11 with GPS lock (typical)
1 PPS Outputs (OCXO Flywheel Generated)	Three outputs: 5V CMOS, LVDS, and RS-232 level output
10/100MHz Outputs (9 outputs total, 7 @ 100MHz, 2 at 10MHz)	4x LVDS 100MHz, 2x sine 100MHz at +7dBm, 1x CMOS, 1x sine 10MHz at +12dBm, 1x LVDS 10MHz
RS-232 Control	Full control via SCPI-99 control commands, NMEA-0183
Avionics Support	3D velocity vector (velocity output for the X, Y, and Z planes)
GPS Frequency	L1, C/A 1574MHz
GPS Antenna	Passive or active, 5V
GPS Receiver	50 channels, mobile, GPS, WAAS, EGNOS, MSAS supported, Galileo ready
Sensitivity	Acquisition -144 dBm Tracking -160 dBm
GPS TTFF	Cold start - <45 sec Warm start - 1 sec Hot start - 1 sec

	TTL Alarm Output	GPS unlock and hardware failure indicator	
	Warm Up Time/ Stabilization Time	<10 min to 1.0E-9 accuracy at +25°C (typical)	
	Supply Voltage (Vdd)	11.0V to 16.0V DC nominal	
	Power Consumption	< 4W at +25°C	
	Operating Temperature	-25C to +75C (+85C extended temp range option)	
	Environmental Conformance	MIL-STD-202, method 204, condition I-A	
	Storage Temperature	-45°C to +85°C	
OSCILLATOR SPECIFICATION:			
	Frequency Output	10MHz and 100MHz	
	10/100MHz Retrace	±2E-08 after 1 hour	
	Frequency Stability Over Temperature	±2.5E-10 low-g option: ±3E-10 per g per axis	
	Oscillator Heater	<12 min	

Warm-Up Time				
Phase Noise	100MHz	Out10MHz Out		
1Hz 10Hz 100Hz 1kHz 10kHz 100Khz	-60dBc/Hz -95dBc/Hz -118dBc/Hz -140dBc/Hz -155dBc/Hz -160dBz/Hz	- 100dBc/Hz - 125dBc/Hz - 140dBc/Hz - 142dBc/Hz - 145dBc/Hz - 145dBc/Hz		
Designed Lifetin	>10 years			

