

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-7 VXT FPGAs
- Four 200 MHz 16-bit A/Ds
- 4 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- LVPECL clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1, 2 & 3) interface up to x8
- Advanced reconfigurability features
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-7 FPGA for custom I/O

General Information

Model 78760 is a member of the Onyx™ family of high performance PCIe boards based on the Xilinx Virtex-7 FPGA. A multichannel, high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its builtin data capture features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes four A/Ds and four banks of memory. In addition to supporting PCI Express Gen. 3 as a native interface, the Model 78760 includes general purpose and gigabit serial connectors for application-specific I/O.

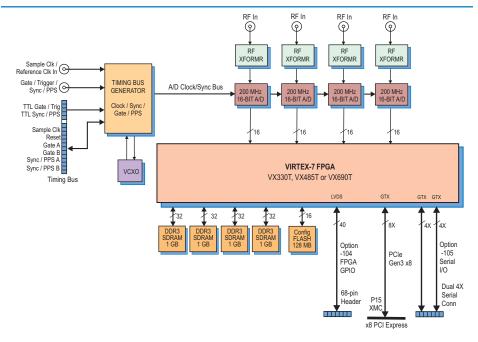
The Onyx Architecture

Based on the proven design of the Pentek Cobalt Family, Onyx raises the processing performance with the new flagship family of Virtex-7 FPGAs from Xilinx. As the central feature of the board architecture, the FPGA has access to all data and control paths, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Onyx Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Onyx family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78760 factory-installed functions include four A/D acquisition IP modules for simplifying data capture and data transfer. IP modules for DDR3 SDRAM memories, a controller for all data clocking

and synchronization functions, a test signal generator, and a PCIe interface complete the factory-installed functions and enable the 78760 to operate as a complete turnkey solution without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized function, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory-installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-7 FPGA

The Virtex-7 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: VX330T VX485T, or VX690T. The VX690T features 3600 DSP48E1 slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources or logic, one of the lowercost VX330T or VX485T can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board.

➤ A/D Converter Stage

The front end accepts four full-scale analog HF or IF inputs on front panel SSMC connectors at +8 dBm into 50 ohms with transformer coupling into four Texas Instruments ADS5485 200 MHz, 16-bit A/D converters.

The digital outputs are delivered into the Virtex-7 FPGA for signal processing, data capture or for routing to other board resources.

Clocking and Synchronization

An internal timing bus provides all timing and synchronization required by the A/D converters. It includes a clock, two sync and two gate or trigger signals. An onboard clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly by the A/D or divided by a built-in clock synthesizer circuit. In an alternate mode, the sample clock can be sourced from an on-board programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

A front panel 26-pin LVPECL Clock/Sync connector allows multiple boards to be synchronized. In the slave mode, it accepts

LVPECL inputs that drive the clock, sync and gate signals. In the master mode, the LVPECL bus can drive the timing signals for synchronizing multiple boards.

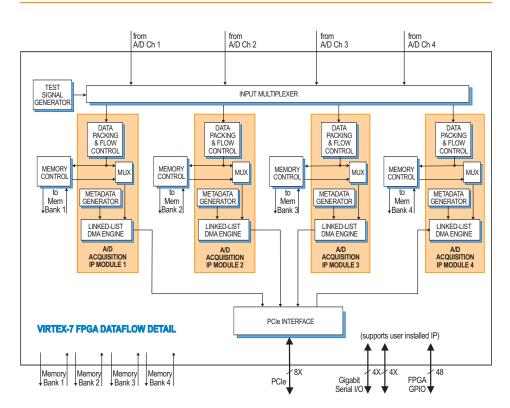
Multiple 78760's can be driven from the LVPECL bus master, supporting synchronous sampling and sync functions across all connected boards.

Memory Resources

The 78760 architecture supports four independent DDR3 SDRAMmemory banks. Each bank is 1 GB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. Built-in memory functions include multichannel A/D data capture, tagging and streaming.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface


The Model 78760 includes an industry-standard interface fully compliant with PCI Express Gen. 1, 2 and 3 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the board.

A/D Acquisition IP Modules The 78760 features four A/D

The 78760 features four A/D Acquisition IP Modules for easily capturing and moving data. Each IP module can receive data from any of the four A/Ds or a test signal generator

Each IP module has an associated memory bank for buffering data in FIFO mode or for storing data in transient capture mode. All memory banks are supported with DMA engines for easily moving A/D data through the PCIe interface. These powerful linked-list DMA engines are capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing A/D channel ID, a sample-accurate time stamp and data length information. These actions simplify the host processor's job of identifying and executing on the data.

4-Channel 200 MHz, 16-bit A/D with Virtex-7 FPGA - x8 PCIe

➤ Specifications

Front Panel Analog Signal Inputs

Input Type: Transformer-coupled, front panel female SSMC connectors Transformer Type: Coil Craft WBC4-6TLB

Full Scale Input: +8 dBm into 50 ohms **3 dB Passband:** 300 kHz to 700 MHz

A/D Converters

Type: Texas Instruments ADS5485 Sampling Rate: 10 MHz to 200 MHz Resolution: 16 bits

Sample Clock Sources: On-board clock synthesizer

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO (10 to 810 MHz), front panel external clock or LVPECL timing bus

Synchronization: VCXO can be locked to an external 4 to 180 MHz PLL system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the A/D clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 800 MHz divider input clock or PLL system reference

Timing Bus: 26-pin front panel connector; LVPECL bus includes, clock/sync/gate/ PPS inputs and outputs; TTL signal for gate/trigger and sync/PPS inputs

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

Standard: Xilinx Virtex-7 XC7VX330T-2 Optional: Xilinx Virtex-7 XC7VX485T-2, or XC7VX690T-2

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105: Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board

Memory

Type: DDR3 SDRAM Size: Four banks, 1 GB each Speed: 800 MHz (1600 MHz DDR)

PCI-Express Interface

PCI Express Bus: Gen. 1, 2 or 3: x4 or x8 Gen. 3 available only with the VX330T-2 and VX690T-2 FPGAs

Environmental

Operating Temp: 0° to 50° C Storage Temp: -20° to 90° C Relative Humidity: 0 to 95%, non-cond.

Size: Half length PCIe card, 4.38 in. x 7.13 in.

Ordering Information

Model Description

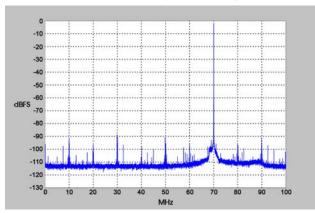
78760 4-Channel 200 MHz A/D

with Virtex-7 FPGA - x8

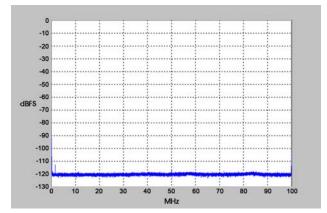
PCle

Options:

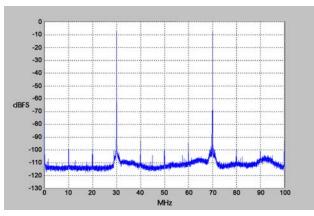
-074 XC7VX485T-2 FPGA
-076 XC7VX690T-2 FPGA
-104 LVDS FPGA I/O through
68-pin ribbon cable


-105 Gigabit serial FPGA I/O through two 4X top edge

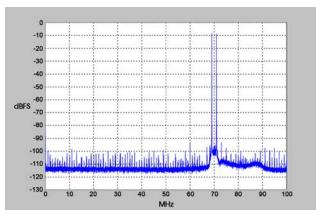
connectors


A/D Performance

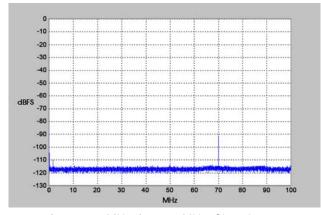
Spurious Free Dynamic Range


 $f_{in} = 70 \text{ MHz}, f_{s} = 200 \text{ MHz}, Internal Clock}$

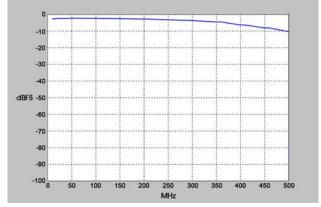
Spurious Pick-up


f_s = 200 MHz, Internal Clock

Two-Tone SFDR


 $f_1 = 30 \text{ MHz}, f_2 = 70 \text{ MHz}, f_s = 200 \text{ MHz}$

Two-Tone SFDR


 $f_1 = 69 \text{ MHz}, f_2 = 71 \text{ MHz}, f_s = 200 \text{ MHz}$

Adjacent Channel Crosstalk

 $f_{in Ch2} = 70 \text{ MHz}, f_{s} = 200 \text{ MHz}, Ch 1 \text{ shown}$

Input Frequency Response

f_g = 200 MHz, Internal Clock

