1 GHz A/D and D/A, Virtex-6 FPGA - x8 PCle

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- Up to 2 GB of DDR3 SDRAM or 32 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- LVPECL sync bus for multiboard synchronization
- PCI Express (Gen. 1 & 2) interface up to x8 wide
- User configurable gigabit serial interface
- LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 78630 is a member of the Cobalt[™] family of high performance PCIe boards based on the Xilinx Virtex-6 FPGA. A high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes 1 GHz A/D and D/A converters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 78630 includes optional general purpose and gigabit serial card connectors for application specific I/O protocols.

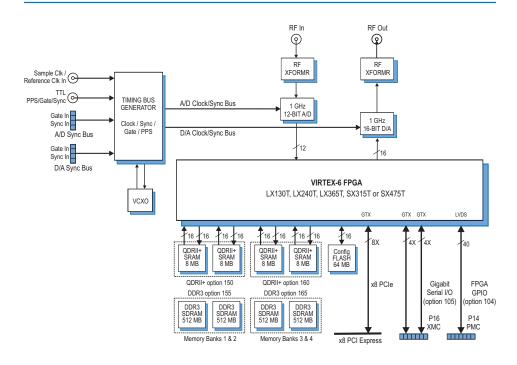
The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory installed applications ideally matched to the board's analog interfaces. The 78630 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module. In addition, IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking

and synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 78630 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, LX365T, SX315T, or SX475T. The SXT parts feature up to 2016 DSP48E slices and are ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with dual 4X gigabit links to the FPGA to support other serial protocols.

1 GHz A/D and D/A, Virtex-6 FPGA - x8 PCle

A/D Acquisition IP Module

The 78630 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 78630 factory-installed functions include a sophisticated D/A Waveform Playback IP module. A linked-list controller allows users to easily play back waveforms stored in either on-board memory or off-board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

➤ A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other board resources.

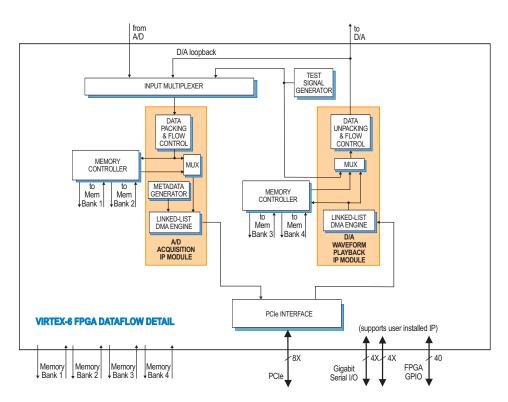
D/A Converter Stage

The 78630 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives an external sample clock from the front panel SSMC connector. This clock can be used directly for either the A/D or D/A sections or can be divided


by a built-in clock synthesizer circuit to provide different A/D and D/A clocks. In an alternate mode, the sample clock can be sourced from an onboard programmable voltage-controlled crystal oscillator. In this mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock for synchronizing the internal oscillator.

Two front panel 7-pin LVPECL Sync connectors allows multiple boards to be synchronized. One connector for the A/D and one for the D/A each provide sync and gate signals.

Memory Resources

The 78630 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the board's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

▶ PCI Express Interface

The Model 78630 includes an industry-standard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x8 lane interface includes multiple DMA controllers for efficient transfers to and from the board.

Specifications

Front Panel Analog Signal Inputs

Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter

Type: Texas Instruments ADS5400 Sampling Rate: 100 MHz to 1 GHz Resolution: 12 bits

D/A Converter

Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs

Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

Synchronization: Clocks can be locked to a front panel 5 or 10 MHz system reference

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC- coupled, 50 ohms, accepts sample clock or a 5 or 10 MHz system reference

Timing Bus: 7-pin connectors, LVPECL bus for sync and gate, one A/D connector and one D/A connector

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

Standard: Xilinx Virtex-6 XC6VLX130T Optional: Xilinx Virtex-6 XC6VLX240T, XC6VLX365T, XC6VSX315T, or XC6VSX475T

Custom I/O

Option -104: Installs PMC P14 connector with 20 LVDS pairs to the FPGA **Option -105:** Installs XMC P16 connector configurable as two 4X or one 8X gigabit serial links to the FPGA

Memory

Option 150 or 160: Two 8 MB QDRII+ SRAM Memory Banks **Option 155 or 165:** Two 512 MB DDR3 SDRAM Memory Banks

PCI-Express Interface

PCI Express Bus: Gen.1 or Gen.2, x4 or x8 Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Half length PCIe card, 4.38 in. x 7.13 in.

Ordering Information Model Description

78630 1 GHz A/D and D/A, Virtex-6 FPGA - x8 PCIe

Options:

-062 XC6VLX240T -063 XC6VLX365T -064 XC6VSX315T -065 XC6VSX475T -104 LVDS FPGA I/O through P14 connector -105 Gigabit serial FPGA I/O through P16 connector -150 Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)

-160 Two 8 MB QDRII+ SRAM Memory Banks (Banks 3 and 4)

-155 Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)

-165 Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

Contact Pentek for availability of conduction-cooled versions