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Abstract—The Allan variance has historically been estimated 

using heterodyne measurement systems, which have low noise 

and preserve the carrier phase information needed for long-

term stability.  The single-sideband phase noise has traditionally 

been estimated using phase detectors that suppress the carrier in 

order to achieve even lower noise.  The recent development of 

the direct-digital phase noise measurement technique makes it 

possible to estimate both statistics accurately and simultaneously 

from the same time series of the phase [1].  Our comparison of 

the three techniques has revealed several challenges to the 

accurate estimation of the Allan variance including undesired 

aliasing, biased estimators, and spurious signal generation.  

Investigation of these difficulties has led to several opportunities 

to improve Allan variance estimation including the ability to 

estimate the instrumentation noise floor during a measurement 

and the existence of an optimum measurement bandwidth.  In 

the end, this has led to faster, easier, more reliable, and more 

accurate measurement methods. 

I. INTRODUCTION 

The Allan variance (AVAR) is almost always estimated 
using some form of heterodyne measurement system [2].  The 
simple beat frequency measurement system is used to measure 
the phase difference between two oscillators that have a 
convenient frequency offset in the range of a few Hz.  When 
one input phase changes by one cycle compared to the other, 
the beat frequency signal shows a one cycle change in phase.  
Thus the carrier phase-difference information is preserved but 
the noise induced phase differences become a larger fraction 
of the period and much easier to measure.  One limitation of 
heterodyne measurements is that atomic frequency standards 
rarely have the frequency offsets needed to produce the beat 
frequency. 

The dual-mixer time difference measurement system is a 
form of heterodyne measurement system commonly used to 
measure the phase difference between two oscillators that 
have nearly equal frequencies, i.e. frequencies within a few Hz 
of one another [3].  This approach uses a transfer oscillator to 
measure the phase differences between each oscillator under 
test and the transfer oscillator.  The phase difference between 
the inputs is estimated by subtracting the two measurements, 
once they have been resampled so they are time aligned.  The 
technique has the benefit of cancelling most of the transfer 
oscillator noise.  The advantage of the dual-mixer 

measurement system is the ability to use the heterodyne 
technique when the oscillators under test don’t have a 
convenient frequency difference. 

The utility of the heterodyne technique has been extended 
through the use of frequency synthesizers.  They can be used 
as the reference in simple heterodyne systems, to produce the 
transfer oscillator offset frequency in dual-mixer time 
difference measurement systems or to extend the dual-mixer 
technique further to measure unequal frequency oscillators, 
i.e. when the difference frequency is a significant fraction of 
the RF frequency.  Careful design of such measurement 
systems results in some of the synthesizer noise cancelling in 
the measurements [4]. 

Heterodyne measurement systems are not used to estimate 
the spectral density of phase noise for several reasons.  Such 
measurement systems obtain phase information from the times 
of the zero crossings of the IF signal.  There is a trade off 
between the low beat frequencies needed to achieve fine time 
resolution and the high beat frequencies needed to measure the 
spectrum far from the carrier.  The heterodyne techniques are 
limited by the presence of the beat frequency signal to a linear 
gain of approximately 10, after which a combination of 
amplitude limiting and bandwidth increases are required to 
produce the fast rise times necessary for low-jitter zero-
crossing detection.  The high slew rate amplifiers used in zero 
crossing detection introduce unnecessary noise by using 
bandwidth in excess of the bandwidth required for the 
downstream analysis of AVAR [5].  These larger bandwidths 
are appropriate for spectrum analysis, but are useless without 
higher beat frequencies, which would then limit the 
measurement resolution.  The study in this paper has also 
revealed that heterodyne measurement systems suffer from 
frequency domain aliasing that may corrupt the AVAR 
estimates and makes this approach unusable for correctly 
estimating the spectral density of phase noise. 

The spectral density of phase noise has traditionally been 
measured using double-balanced mixers as phase detectors 
[6].  The usual method is to phase lock the device under test 
and the reference to one another.  The control loop is used to 
maintain the two signals near quadrature so the output of the 
mixer is near zero and approximately proportional to the phase 
difference between the two oscillators.  This suppression of 
the carrier at the output of the mixer increases the broadband  
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Figure 1: Cross correlation of phase-measurement subsystems 

 

linear amplification that may be used before the mixer output 
is sampled.  The amplification reduces the contribution of 
quantization noise of the sampler to an insignificant level.  
The noise bandwidth and sampling frequency may be chosen 
to satisfy the Nyquist-Shannon sampling theorem by 
employing adequate analog filtering in front of the sampler to 
reduce the signal level above one-half the sampling frequency 
to negligible levels [7].  This ability makes the phase-lock 
technique very well suited to estimate the spectral density of 
phase noise.  Advanced techniques suppress the carrier of one 
of the inputs to the mixer reducing mixer flicker noise [8].  
Outside the loop bandwidth, the time series of phase can be 
used to directly estimate the phase spectrum.  Inside the loop 
bandwidth, the feedback voltage can be used to estimate the 
frequency spectrum, which can be converted to phase 
spectrum.  However, the phase-lock loop used to maintain 
quadrature suppresses the carrier phase information inside the 
loop bandwidth and small calibration errors in the estimate of 
the frequency-voltage tuning sensitivity of the oscillator make 
it impossible to precisely recover the phase information.  The 
small frequency errors integrate and the phase error grows 
linearly with time.  Thus, the time series of phase can’t be 
used to estimate AVAR with known accuracy for sample 
times much longer than the phase-lock loop time constant.   

Direct-digital measurement systems resolve the 
incompatibility between the heterodyne and phase-lock 
measurement systems.  The direct-digital measurement 
approach digitizes the input signals before any other signal 
processing and then performs frequency conversion and phase 
detection numerically.  The fundamental advance is the ability 
to measure the phase throughout the cycle using a phase 
detector based on the arctangent function, which requires no 
calibration and does not require full conversion to baseband 
(i.e. a phase lock loop).  The total phase is “unwrapped” by 
adding π radians each time the baseband signal passes the 
branch cut.  The principal limitation of the technique is the 
noise contribution of the analog-to-digital converters and the 
poor resolution of the arctangent near the branch cut.  These 
noise contributions require the use of cross-correlation in 
order to make it possible to measure phase noise of high 
performance oscillators as shown in Figure 1.  The use of the 
cross spectrum and the cross AVAR creates new challenges 
for achieving unbiased estimates of AVAR.  Because of the 
widespread use of AVAR in specifying oscillator and clock 
performance, it is very advantageous to find approaches that 
use the cross statistics to produce unbiased estimates of 
AVAR or logical extensions of AVAR when appropriate.  
Many of the plots shown in the following report the Allan 
deviation – the square root of AVAR – which is abbreviated 
ADEV. 

II. OVERVIEW 

AVAR is a measure of how much the frequency of an 

oscillator changes from one sample interval of duration τ to 
the next interval with no intervening dead time.  AVAR 
replaced the variance as a measure of frequency stability 
because the value of the estimate of the variance does not 
converge as the number of estimates increases for many of the 
noise processes that are commonly used to model precision 
clocks and oscillators [9].  Using the IEEE recommended 
definition of frequency based on the end point phases, AVAR 

can be written in terms of the phase series, φk [10], 
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where the angle brackets signify expectation value.  AVAR 

can also be calculated from the phase noise spectrum, Sφ(f), as 
shown in (2) 
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III. CHALLENGES ESTIMATING AVAR 

A. Using Heterodyne Phase Measurements 

It is useful to distinguish between analog phase 

measurements that rely on a transducer to convert phase to a 

measurable quantity and digital phase measurements that only 

utilize techniques such as counting or taking ratios that don’t 

require user calibration.  The heterodyne method of estimating 

the phase difference between oscillators is a form of digital 

measurement since only a counter is required to determine the 

time of occurrence of each zero crossing.  The down-

conversion process preserves a cycle of phase [11].  That is, 

one cycle at the input frequency is equal to one cycle at the 

intermediate frequency (IF).  Heterodyning makes it easier to 

measure a fractional cycle because the period has increased 

compared to the period of the counter time base.  The 

measurements are the times of the “zero crossings” at which 

time the signal is half way between the signal maximum and 

minimum.  Only one sign of zero crossing can be used 

because the zero voltage level of the waveform moves relative 

to the zero phase point due to threshold noise in the 

comparator circuit.  This noise appears as duty cycle 

variations – the positive and negative zero crossings move 

relative to one another – making it difficult, perhaps 

impossible, to use the second set to complement the phase 

information of the first set and thereby improve the 

performance level.  The same phenomenon has been observed 

to limit the phase noise performance of digital dividers with 

analog input signals [12]. 
As a result, heterodyne phase-difference measurements for 

low-noise applications comprise at most one sample per full 
IF cycle.  The IF is low-pass filtered to avoid the large phase  
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Figure 2: Frequency domain aliasing plotted on linear axes 

 

shifts of band pass filters.  The bandwidth is often chosen to 
be at least three times the IF frequency in order to pass the 3

rd
 

or higher harmonic and improve the slew rate of the mixer 
output near the zero crossing, but it must at the very minimum 
equal the IF frequency.  A band pass filter can’t be used 
without the filter’s temperature coefficient dominating the low 
frequency noise of the measurement.  Thus, the heterodyne 
measurement procedure violates the sampling theorem, which 
states that a signal is properly represented by digital samples 
only if it contains no power at Fourier frequencies above one-
half the sampling frequency.  The low-pass filter that passes 
the IF cannot control signal content between one-half the 
sampling frequency and the sampling frequency.  All signal 
components above one-half the sampling frequency appear as 
aliases in the frequency band between 0 and one-half the 
sampling frequency as shown in Figure 2, where (a) shows the 
true spectrum and (b) shows the result of computing the 
spectrum from an under-sampled time series without anti-alias 
filtering.  If there is significant noise power in the region from 
one-half to one times the IF frequency, then the aliased signals 
are present all the way to baseband and no further additional 
digital signal processing can eliminate their effect on ADEV 
and spectrum calculations.  Other papers have discussed how 
some counters implement averaging algorithms that differ 
from the way the AVAR definition weights data [13].  Here 
we have seen how resolution enhancement by period 
expansion redistributes the noise in the frequency domain and 
may have significant impact on the AVAR calculation.  There 
is no way to know whether this has happened without a priori 
knowledge of the phase noise spectrum. 

This inevitable aliasing affects AVAR in some cases but 
not in others.  If the dominant noise process is white phase 
noise, such as may occur in quartz crystal oscillators and 
hydrogen masers at short averaging times, AVAR is 

insensitive to aliasing.  Suppose the noise density is σ0
2
 and 

the measurement bandwidth is fh, which is assumed to be 
rectangular for simplicity.  Substitution into (2) yields  
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After aliasing, the noise density is 2fhσ0
2
/fs and the bandwidth 

is fs/2.   The product and AVAR are unchanged.  However,  
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Figure 3: ADEV variations due to aliasing of power line spurs 

 
when the noise is colored or spurious signals are significant, 
aliasing can have a dramatic affect on the AVAR estimate.   

Consider the example of a heterodyne measurement with 
100 Hz sample rate and a dominant 60 Hz spurious signal 
from the power mains.  When the spectral density is a narrow 
line, AVAR is proportional to the window function of (2) 
evaluated at the frequency of the narrowband signal.  The 
component of AVAR due to this signal has maxima at odd 
multiples of the inverse of twice the signal frequency and 
zeros at multiples of the inverse of the signal frequency.  Thus, 
the true AVAR has a peak at 8.83 ms (half the period) and 
every odd multiple and a zero at every multiple of 16.67 ms 
(the period of the AC power).  However, the signal appears as 
an alias at 40 Hz and the estimated AVAR has peak at every 
odd multiple of 12.5 ms and a zero at every multiple of 25 ms.  
Figure 3 shows the variation in the ADEV estimates between 
heterodyne phase-difference measurements with aliased spurs 
and simultaneous direct-digital measurements with spurs at 
the correct frequency for the case when ADEV has noticeable 
power-line spurious signals.  Two trend lines are plotted that 
correspond to the peaks of the power line phase modulation 
and the oscillator phase noise respectively.  

Although a bit outside of the focus of this paper, it is 
notable that aliasing can make heterodyne phase-difference 
measurements unreliable for spectrum estimation. This may 
occur if the down conversion folds noise, especially white 
phase noise, onto the heterodyne signal, causing spectral 
estimation biases.  Figure 4 shows the result of estimating the 
single-sideband phase noise with a 100 Hz beat frequency 
heterodyne measurement system having 450-Hz noise 
bandwidth.  A calibrated source with −110 dBc/Hz single 
sideband phase noise (SSB) was incorrectly estimated to have 
−100 dBc/Hz SSB.  The excess noise in dB is calculated 
as10*log (450/50) or 9.5 dB which compares well with the 10 
dB measured.  The same measurement system estimates the 
correct ADEV because ADEV is insensitive to whether the 
white noise is spread over 450 Hz or folded into the 50-Hz 
half sampling rate.  When used with care, heterodyne 
measurements can be employed to estimate the spectrum of 
oscillators close to the carrier where the highly colored (SSB 

∝ 1/f3) flicker frequency noise decreases rapidly with  



 

Figure 4: Phase noise of -110 dBc/Hz estimated from 100 Hz heterodyne 

measurements appears at -100 dBc/Hz 

 
frequency.  The rapid roll-off of the noise with Fourier 
frequency prevents the noise originating above one-half the 
sampling frequency from significantly affecting the value 
measured much closer to the carrier. 

B. Using Phase Noise Measurements 

The method of estimating AVAR by integrating the 
spectral density of phase using (2) is generally useful because 
it enables frequency domain filtering to separate the effects of 
various components of the oscillator signal.  For example, 
power line spurs can be removed and AVAR corresponding to 
the noise and the spurs can be computed separately. It is even 
more useful when the spurious signals can be shown to 
originate in the measurement process and may be deleted 
before they corrupt the AVAR estimate as discussed in 
Section III.D 

The first peak in the integration kernel in (2) occurs at a 

frequency of 1/2τ.  Highly accurate phase noise measurements 
are required at Fourier frequencies well below the first peak 
frequency.  Thus, when the time series of phase is produced 
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Figure 5: Calculated and measured ADEV for bandwidths from 500Hz 

to 0.5 Hz (top to bottom) 

 
by an analog phase detector with a PLL to maintain phase 
quadrature, extremely long loop time constants are required. 
The bandwidth dependence of AVAR shown in (2) and (3) 
makes it imperative to report the measurement bandwidth.  
Figure 5 shows the traditional plot of the measurement 
dependence.  Both the calculated and measured ADEV of a 
calibrated white phase noise source are plotted as the 
measurement bandwidth is varied from 500 Hz to 0.5 Hz.  For 
each sample rate fs, the measurement bandwidth is fs /2.  The 
measured values are shown as individual plotted points, while 
the straight lines were calculated from (3) using the phase 
noise density of the source and the measurement bandwidth, 
which was varied over the range of 500Hz to 0.5 Hz.  Section 
IV.B will show a more complete picture of the bandwidth 
dependence that has emerged since the direct digital phase-
difference measurements have extended the lower limit to the 
range of available measurement bandwidths, which had 
previously been equal to fs for heterodyne measurement 
systems. 

C. Using Cross Correlation  

Cross correlation is often used to reduce the instrument 
noise contribution to the measurement [14].  Independent 
measurements of the time series of the phase difference are 

made and (1) is rewritten as (4) using the ⊗ symbol to 
designate the cross version of the statistic. 
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If heterodyne or direct-digital phase-difference measurements 
are used, then AVAR can be calculated even when the long-
term oscillator frequency variations are dominated by 
temperature or aging effects.  However, these deterministic 
frequency variations result in cross statistics that are quite 
noticeably different from the usual estimator.  If a single 
reference oscillator is used as in Fig. 1, then the aging induced 
cross AVAR is given by 

 ( ) ( )22 21
2y IN REFD Dσ τ τ⊗ = − , (5) 

where DIN − DREF is the relative aging of the input compared 
to the reference.  This is the same as AVAR.  

The cross AVAR also performs a separation of variances if 
the independent reference oscillators are used as references for 
the two phase-difference measurement sub-systems as shown 
in Figure 6.  Under these conditions, the cross AVAR may be 
a biased estimator of AVAR and doesn’t necessarily represent 
it well.  For example, in the region where the differential aging 
between the input and reference oscillators is the dominant 
source of frequency variation, the cross ADEV is given by 

 ( ) ( )( )2 21
1 22y IN REF IN REFD D D Dσ τ τ⊗ = − −

, (6) 



where DIN − DREF1 and DIN  −DREF2 are the relative aging of the 
input oscillator relative to the two independent references.  
Under these circumstances, the cross AVAR may be negative 
and ADEV doesn’t exist.  The most obvious fix is to use the 
absolute value of the cross AVAR as an estimator of AVAR.  
However, this approach results in a notch in AVAR as shown 
in Fig. 7.  The notch can be smoothed by integrating the cross 
spectrum to obtain AVAR. 
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An example of fixing the AVAR notch using this technique is 
shown in Fig. 8.  

D. Using Direct-Digital Phase-Difference Measurements 

The input frequency νIN is sampled with frequency νs.  
Because this process is non-linear, spurs are created at all 

frequencies M νIN  -  N νs.  When the frequency of the spur lies 
within the AVAR bandwidth and M and N are less than 
approximately 300, the AVAR estimate is noticeably affected.  
Most of these spurs can be identified and removed.  Spurious 
modulation of the input signal must always produce a line in 
the spectum whose phase is near the real axis.  However, the 
spectra of internally generated sampling spurs are found 
empirically to have uniformly distributed phase angles.  Those 
that don’t lie along the real axis are known to not originate as 
modulation of the input signal and may be removed from the 
spectrum before integration to obtain AVAR. 

Thus, when cross correlation is used to reduce the 
instrumentation contribution to the measurement noise, 
integration of the cross spectrum using (7) is a superior 
method of generating an unbiased estimate of AVAR than the 
use of (4) directly from very small sample times up to a few 
thousand seconds.  From the practical point of view, it is very 
difficult to compute AVAR from the cross spectrum for times 
longer than about two-thousand seconds.  The kernel of the 

integral in (7) peaks at f = 1 / 2τ and AVAR depends 
significantly on the first few bins of the spectrum estimate, 
which are known to be biased [15].  The impact of the lowest 
frequency portion of the spectrum on AVAR also depends on 
the method of numerical integration.  As a result, it is not 
unusual to obtain a result that looks like Figure 9.  Thus, for 
times longer than 1 s, a better AVAR estimate is obtained by 
selecting the largest of (7) and the absolute value of (4).  
Selection of the larger estimate eliminates both the notch 
when the cross variance is negative as well as the low values 

at long τ due to possible underestimation of first bin of the 
spectrum. 
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Figure 6: Cross correlation of phase-measurement subsystems and 

reference oscillators 
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Figure 7: The absolute cross ADEV is a biased estimate of ADEV 

 

IV. OPPORTUNITIES FOR AVAR ESTIMATION USING 

DIRECT-DIGITAL MEASUREMENT SYSTEMS 

A. Flexible Filtering 

Direct-digital measurement systems make it possible to 
satisfy the requirements of the sampling theorem.  The RF 
signal can be sampled at a rate larger than twice the analog 
anti-alias filter bandwidth out to a frequency where there is 
sufficient rejection of undesirable signals.  Digital anti-alias 
filtering and further sub-sampling allow total flexibility in the 
choice of measurement bandwidth.  The maximum 
measurement bandwidth set by the sampling theorem is 

(2τmin)
-1
, where τmin is sample period as well as the minimum 

sample interval for calculating AVAR. 

Figure 10 and Figure 11 show the design of a typical anti-
alias filter and its effect on ADEV respectively.  The 

unfiltered data have τmin = 100 ms and are filtered with a 
bandwidth of ½ Hz.  Fig. 11 shows that for τ < 1 s, ADEV is 
highly filter dependent and should not be reported as 

demonstrative of device performance.  Thus τmin is 1 s for the 
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Figure 8: The integrated spectrum improves the ADEV estimate 
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Figure 9: The integral of the spectrum produces poor ADEV estimates 

for ττττ > 2000 s 
anti-alias filtered data.  The combination of the requirements 
of the sampling theorem and the effect of the anti-alias filter 
on AVAR leads to the conclusion that there is an optimum 
measurement bandwidth, fh, that should be used to compute 
AVAR.     The effect of the measurement bandwidth on 
AVAR sets the smallest bandwidth that is representative of the 
device.  The sampling theorem sets the largest measurement 
bandwidth that is representative of the device and the two 
limits are equal.  Thus, the optimum measurement bandwidth 

is (2τmin)
-1
. 

B. Cross Statistics 

The variance of the AVAR estimate calculated according 
to (1) is approximately inversely proportional to the square-
root of the number of measurements [16].  However, the 
AVAR estimate includes the mean-square instrument noise.  
A separate measurement of the instrumentation noise floor is 
usually performed to determine the degree to which it has 
affected the AVAR estimate.  When cross-correlation is used  
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Figure 10: Anti alias filter design with ½ Hz noise bandwidth 
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Figure 11: ADEV has an optimum bandwidth for any sample rate 

 

to estimate AVAR of a pair of oscillators whose noise is less 
than the noise floor of a single measurement subsystem, the 
measurement is not representative of the oscillator AVAR 
until sufficient estimates have been averaged to reduce the 
instrument noise below the device under test noise.  Since the 
device noise is unknown, the problem of estimating the quality 
of the measurement is more difficult than the case of the 
standard AVAR. 

However, more information is available from the cross 
statistics to help resolve this problem.  The real part of the 
cross spectrum is an unbiased estimator of the spectrum [17].  
Thus (7) is an unbiased estimator of AVAR.  Similarly, the 
imaginary part of the spectrum can be used to calculate an 
AVAR estimate as shown in (8), which is an estimator of the 
instrument’s AVAR noise floor. 
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Fig. 12 illustrates the use of the imaginary part of the 
spectrum to perform an in-situ estimate of the noise floor of 
the measurement.  The upper black line is the measured 
spectrum between two commercial high-performance cesium 
beam frequency standards.  Two estimates of the measurement 
noise are plotted below it.  The gray curve shows the 
imaginary part of the spectrum, measured simultaneously with 
the devices under test.  Since the real part of the instrument 
noise is likely to have the same magnitude as the imaginary 
part, the grey area is a good estimate of instrumental noise.  
When it is more than 6 dB below the real part of the spectrum, 
the instrument noise bias is less than 1 dB and enough 
averages have been performed for a valid measurement.  A 
traditional noise floor measurement was performed subsequent 
to measuring the devices under test by splitting the signal from 
one source and applying it to both inputs of the measurement 
system.  The results are over-plotted as grey dots.  The dark 
grey area showing the overlap of the two noise floor estimates 
illustrates the quality of the in-situ noise floor measurement.   
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Figure 12: The cross spectrum contains noise floor information 
 

Figure 13 illustrates AVAR and its noise floor calculated from 
(8) during the same set of measurements. 

V. CONCLUSIONS 

Direct-digital phase-difference measurement technology 
has made it possible to simultaneously estimate phase noise 
and AVAR without the use of phase-lock loops.  The real and 
imaginary components of the cross spectrum have been used 
to supplement the AVAR estimation process.  The real part of 
the cross spectrum is used for frequency domain filtering of 
internally generated spurious signals that result from synthesis 
of arbitrary input frequencies.  It is also used to estimate 
AVAR in the region where the cross AVAR is a biased 
estimator.  Finally, the imaginary part of the cross spectrum is 
used to estimate the instrumental noise contribution to AVAR.   

Direct-digital measurements also enable more flexibility to 
set the measurement bandwidth and have led to the conclusion 
that there is an optimum noise bandwidth for AVAR 
estimation.  Appropriate filtering eliminates aliasing common 
to heterodyne measurement systems. The increased 
information available through the use of cross statistics adds 
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Figure 13: ADEV noise floor in gray calculated from the cross spectrum 

 

complexity, but that complexity and the use of proper filtering 
result in improved measurement accuracy and reliability. 
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